Digital Fixed Points, Approximate Fixed Points, and Universal Functions
نویسندگان
چکیده
A. Rosenfeld [23] introduced the notion of a digitally continuous function between digital images, and showed that although digital images need not have fixed point properties analogous to those of the Euclidean spaces modeled by the images, there often are approximate fixed point properties of such images. In the current paper, we obtain additional results concerning fixed points and approximate fixed points of digitally continuous functions. Among these are several results concerning the relationship between universal functions and the approximate fixed point property (AFPP).
منابع مشابه
Diagonal arguments and fixed points
A universal schema for diagonalization was popularized by N.S. Yanofsky (2003), based on a pioneering work of F.W. Lawvere (1969), in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function. It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema. Here, we fi...
متن کاملFixed fuzzy points of generalized Geraghty type fuzzy mappings on complete metric spaces
Generalized Geraghty type fuzzy mappings oncomplete metric spaces are introduced and a fixed point theorem thatgeneralizes some recent comparable results for fuzzy mappings incontemporary literature is obtained. Example is provided to show thevalidity of obtained results over comparable classical results for fuzzymappings in fixed point theory. As an application, existence of coincidencefuzzy p...
متن کاملA new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces
In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.
متن کاملCommon fixed points for a pair of mappings in $b$-Metric spaces via digraphs and altering distance functions
In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings satisfying some generalized contractive type conditions in $b$-metric spaces endowed with graphs and altering distance functions. Finally, some examples are provided to justify the validity of our results.
متن کاملOn the existence of fixed points for contraction mappings depending on two functions
In this paper we study the existence of fixed points for mappings defined on complete metric spaces, satisfying a general contractive inequality depending on two additional mappings.
متن کامل